
Python for Beginners

Prerequisites: Knowledge of any programming language.

Module 1: Core Python Data Types

- Introducing Python Object Types

- Conceptual hierarchy and built-in object types.

- Core data types: int, str, float, bool

- Mutability and immutability.

Module 2. Data Structures

- List

- Tuple

- Sets

- Dictionary

Module 3. The Dynamic Typing Interlude

- Python’s dynamic typing mechanism.

- Shared references and garbage collection.

Module 4. File Handling

- File Opening.

- File Closing.

- Different modes of file handling

- Context Manager

Hands-On Labs:

- Implement basic file handling operations.

- Explore dynamic typing with custom examples.

Module 5: String Manipulation and Structured Data

- String Fundamentals

- String methods, slicing, and formatting techniques.

- Advanced string operations (templates and Unicode).

Module 6: Lists and Dictionaries and Tuples

- List comprehensions, nesting, and operations.

- Dictionary methods, comprehensions, and optimizations.

- Tuples vs. lists.

Module 7: Data Storage and Transmission

- Data serialization with `pickle`

- Data serialization with `json`.

- Data deserialization

Hands-On Labs:

- Perform serialization and Deserialization of data

Module 8: Control Flow and Iterations

- Python Statements

- Understanding Python’s indentation-based syntax.

- Interactive loops and error handling basics.

Module 9: Conditionals, Loops, and Comprehensions

- Writing complex conditional logic with `if`, `elif`, `else`.

- Loop constructs: `while`, `for`, and `else`.

- Iteration protocols and advanced comprehensions.

Hands-On Labs:

- Develop a multi-condition data filter.

- Use list comprehensions to transform nested data.

Module 10: Functions, Scopes, and Generators

- Functions and Arguments

- Function basics: defining and calling.

- Scope and closure concepts.

- Argument-passing techniques, including `*args` and `**kwargs`.

Module 11: Advanced Functions

- Recursive functions and functional programming tools (`map`, `filter`).

- `lambda` expressions and introspection.

Module 12: Generators and Comprehensions

- Generator functions with `yield`.

- Generator expressions and comparisons to list comprehensions.

- Advanced use cases for generators in pipelines.

Hands-On Labs:

- Create a recursive function for hierarchical data traversal.

- Implement a generator pipeline for processing live data streams.

Module 13: Benchmarking and Practical Applications

- Benchmarking Techniques

- Timing operations with `timeit`

- Performance analysis using iteration

Module 14: Practical Applications and Best Practices

- Review of covered concepts applied to real-world scenarios.

- Writing efficient, maintainable Python code.

Hands-On Labs:

- Build a custom benchmarking script for comparing sorting algorithms.

Module 15: Project Work:

- Data aggregator with file handling and JSON output.

- Custom benchmarking utility for Python scripts.

